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Precise and Accurate Lattice Parameters by Film Powder Methods. IV.
Theoretical Calculation of Axial (Vertical) Divergence Profiles, Centroid Shifts,
and Variances for Cylindrical Powder Diffraction Cameras

By J. I. LaNgFORD
University College, Cardiff, Wales

E. R. P1xe
Royal Radar Establishment, Malvern, Worcs., England

AND K. E. BED,
Goodyear Atomic Corporation*, Piketon, Okio, U.S. A.

(Recetved 11 June 1963)

An analytic method, based on an expansion of Eastabrook (1952) to the first power in the deviation
from the Bragg angle, is used to derive the axial-divergence line profiles, centroid shifts and
variances for cylindrical powder cameras. Numerical values and profiles are given for the modified
5:76 cm Philips camera and input collimator described by Beu, Musil & Scott (1962). The profiles
are compared with those obtained by Beu, Landstrom, Whitney & Pike (1964) (preceding paper)
who used a graphical method, based on exact equations, for the same calculation.

Excellent agreement is found over all but the extreme ends of the angular range, ~ 26 greater
than 175° and less than 10°. At these extreme angles the graphical method is expected to give
superior results, since the expansions used in the analytical approach become more slowly conver-
gent. It is shown, however, that at the high-angle end the differences are too small to be of praec-
tical account, although at low Bragg angles the differences might be measurable.

The displacement of the centroid is found to be —0-025°(26) at 10°(26) falling to zero at about
130°, and is 0-005° at 170°. The corresponding root-mean-square breadths at these angles are,
respectively, 0-030°(26), a minimum of about 0-002° and 0-006°.

1. Introduction Pike (1964) (preceding paper) with the conclusion
that no quantitative methods for the evaluation of
these effects in film powder cameras were previously
available. This was remedied by a graphical calcula-
tion of line profiles based on the exact geometrical
relationship between primary and diffracted rays given

A short review of previous work on axial-divergence
effects has been given by Beu, Landstrom, Whitney &

* Under Contract AT-(33-2)-1 with the U.S. Atomic
Energy Commission.
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ACCURATE LATTICE PARAMETERS BY FILM POWDER METHODS. IV
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Fig. 1. Cylindrical powder camera: schematic representation of axial divergence.

by Eastabrook (1952). The method involved an inter-
mediate machine calculation of the deviations from
the Bragg angle, using this equation. Since, however,
these deviations are almost always small, an alterna-
tive method is to expand the exact equation in powers
of this deviation and neglect square and higher-order
terms. A closed form for the deviations, first given by
Eastabrook (1952, equation 12), which is valid at all
but extreme Bragg angles, can be obtained in this way.

This alternative method is used in the present paper,
and permits analytical expressions to be obtained for
the line profile itself which are exact to the first
power in the deviations. These expressions are devel-
oped in section 2.1, and results are evaluated for the
same camera and collimator as were used for illustra-
tion in the previous paper. The results are compared
directly.

In section 2.2 the displacement of the centroid of
the line profile is calculated; our approach again
allows a closed form to be derived. The method is ex-
tended to a discussion of the profile variance in sec-
tion 2.3.

2. Theoretical treatment

2.1. Lime profile

In general, axial divergence of the primary and
diffracted X-ray beams causes the measured angle,
2@, to differ from the Bragg angle, 26, by a small
amount 2¢, such that

20=2¢+2¢. 1)

Rays from an element Jf at f on the line focus (4 in
Fig. 1) are diffracted by an element ép at p on the
specimen (P) to B on a generator of the film cylinder.
If the focus is assumed to be uniform, with unit

intensity per unit length, the element of intensity
detected at B is
I(26)6(2¢) = of op

_[ ¥
12¢), = [mLap . @)

or

The total intensity at B, the sum of all such contribu-
tions, is

ey =2 {age)}pap
or
12¢) = S,,[a(zfe)] dp . (3)

Eastabrook (1952) has derived an expression for 2¢.
In the above notation

cos (2p—2¢)
(P—fP+827¥ (r—p)2+ B2 (p=f) (r—p)
=[ 5 J [ o J cos2tp——~S— B

where r is the distance of B from the equatorial plane
along a generator of the film cylinder, R is the camera
radius, and S is the distance between the focus and
axis of rotation. Except at low and very high angles,
for typical camera dimensions, this approximates to
(Bastabrook, 1952, equation 12)

2e=1 [(p_;zf_ﬁ_'_(r_;zﬁ} cot 2¢

)
N R

cosec 2¢ , (4)

the error in 2¢ being



J.I. LANGFORD, E. R. PIKE AND K. E. BEU

A(2¢e) ~$(2¢)2 cot 29—} [(p;z]f_(r }Z))ZJ 2cot 2¢.
If S|R=yu,
(282 tan 2¢)(2¢)
=[(p—=f?+12(r—p)l=2u(p—[)r—p) sec 2¢ . (5)
Re-arranging equation (5) and solving for f gives

J=p—u(r—p)sec2¢
+ )/ (u2(r —p)? tan2 2¢ + (282 tan 2¢)(2¢)) , (6)
o, RS
22¢) |l Y(r—p)2+(2R2 cot 2¢)(2¢))

(The positive and negative signs correspond to contri-
butions from each side of the median plane. Since these
are symmetrical, the modulus may be taken.) From
equation (3),

1(28)=ng dp
Jo Y ((r—p)2+ (2R2 cot 2¢)(2¢))°

and

(7)

and the line profile is

I(2¢) = RS [sinh-l (p—7) ]
D

V((2R2 cot 2?) (28))

26 >0, 2p<m/2
2 <0, 2¢>m/2

I(2¢)=RS [log [p—r|lp
2&max = 2¢ > 2é&min, 2q)= 7-[/2
I(2¢)=RS [cosh*l __(p=n) ]
V(2R2 |2 cot 2¢]) |p

26 <0, 20<7/2
2¢ >0, 29> m/2.

Thg limits of p in equation (8) depend upon the input
collimation (we assume that the incident beam fills

KE+H(S-p)p-x5=0 T
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the collimation system). They are determined by refer-
ence to a diagram of the type illustrated in Fig. 2, in
which accessible values of p and f for given ranges of
2¢ are enclosed by boundary lines. These boundary
lines, for slits at (+z1, y1) and (+ a2, y2) as in Fig. 1,
are given by the equations (see also Beu, Landstrom,
Whitney & Pike, 1964)

nf+S—y)praS=0 9)

yof +(S—y2)p £ 228=0 (10)
or

p=—mef—ce (VM) (11)

p=—mif+c1 (MN) (12)

p=—meft+ce (NU) (13)
and

p=—mif—ec (UV), (14)
where
m1=i—, cl=x—ls—, ma= —2>— and @:ﬂs’:.

S—wn S—wyn —Y2 —Y2

It may be shown that the 2¢ contours in the (f, p)
plane have a centre of symmetry at f=p=r. For
profiles along the equatorial plane of the film cylinder
(r=0), the centre is at the origin, and the integration
may be simplified by taking f=0 (or p=0) as a bound-
ary. For off-axis profiles, however, the entire region
VMNU must be taken.

The 2¢ contours vary considerably for different
values of 2¢ and general expressions for the limits in
equation (8) would be cumbersome. The general
procedure for determining the limits will become ap-
parent if the particular case of an equatorial profile
at 2¢=45°(260) is considered. For non-equatorial
profiles or other values of 2¢ a similar argument
applies. The 2¢ curves for this case, calculated for a
Philips 576 cm powder camera, are given in Fig. 2,
and if

(Limit £)

NF+H(S-R)p+xS=0 u

Fig. 2. 2¢ contours in the (f, p) plane for a modified Philips 5:76 cm powder camera (29 =45°(20), r=0).
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W20, 26, P)= —soib D, (15)
T V/(2R2|2¢ cot 2¢])
the line profile is
I(2¢) o [sinh-1 ¥ Qem = 281 = 261
I(2¢) « [sinh-1 W2 +[sinh-1 P2
2¢er = 2e2>0
I2e)= 2e=0
(2e)=00 e (16)

I(2¢) « [cosh—1¥]E2 +[cosh* Wi

0>2¢3 > 2¢ex
I(2¢) o [cosh1W)p2
I(2¢) o« [cosh-1 P2

where p: satisfies equations (6) and (11), p2 satisfies
equations (6) and (12), ps satisfies equations (6) and
(13). pa is the minimum value of p for each 2¢ and it
divides those 2¢ curves which are double-valued into
two single-valued sections which can then be used to
calculate I(2¢) in the range of 0>2e>2¢ex. This
occurs when 2¢ cot 29 <0, and the second term of
equation (6) is zero. (It is also the value for which
cosh-1¥=0, and thus need not be evaluated.) The
locus of ps is given by

f=p—ulr—p)sec2¢. 17)

The zones of 2¢ over which equations (16) are applic-
able are determined at each 2¢ (and different r) as
follows.

(@) 26=0

From equation (6), the region bounded by 2¢=0
lies between the two straight lines

Qex = 284 > 2en

2en = 265 = 2¢¢

f=p— p{r—p)(sec 2¢ ¥ tan 2¢) , (18)

and the lines intersect at f=p=r.

(b) 2e6=2em(2emax for 2¢ <7/2)

2ep is given by the substitution of (far, par) in

equation (4).

(c) 2e=2en(2¢min for 2¢> n/2)

2ey is given by the substitution of (fn, px) in

equation (4).

(d) 2e=2¢L (=2¢¢ for r=0)
2¢1[2¢¢] is given by the substitution of (fz, 0)
[(fo, 0)] in equation (4). :

(e) 2e=2¢x
2¢x is the value of 2& corresponding to the
intersection of the locus of ps and one of the
boundaries. (LM, MN, NQ for r=0, VM, MN,
NU, UV for r£0.)

(f) 2e=2¢c (2&min for 2¢ <7/2; 2Emax for 2¢ > m/2.)
This is obtained by solving equation (6) with
(11), (12) or (13) (or 14 when r40) for p and
differentiating with respect to 2e.

ACCURATE LATTICE PARAMETERS BY FILM POWDER METHODS. IV

The example chosen involves all possible 2¢ zones.
At other angles there may be no contribution from
some zones and in many cases the contribution to the
intensity will be negligibly small.

There are thus three stages in the determination of
the line-profile arising from axial divergence at a
particular 2¢ or r.

1. The zones of the 2¢ contours in the (f, p) plane
are determined.

2. The p limits corresponding to each 2¢ curve are
calculated.

3. The intensities at each 2¢ are computed.

These operations may all be performed on a com-
puter and, to give an indication of the magnitude of
the effect of axial divergence on the diffracted inten-

29=90°(26) ) \\
A

1(2¢)

l

{

2¢=130:623°(26) \ 2¢= 45°(26) |+
— Theoretical profile i

+Beu et al \
.
\ S~

2p-175%(26)

25-5°(26)

—

2p=160°(26) l

v\,

‘ DS it
-20-15-10-5 0 5 10 15 20-50-40-30-20-10 0 10 20 30 40 50
26°(20)<10% 26°(20)<10°

Fig. 3. Intensity profiles for a modified Philips 5:76 cm
powder camera (r=0).
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Fig. 4. Intensity profiles for a modified Philips 5-76 cm
powder camera (Non-equatorial profiles, 2¢= 160° (26)).
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sity, a Stantec ZEBRA has been used to compute
the profiles at various angles for a modified Philips
576 cm camera (Beu, Musil & Scott, 1962). For this
camera, S=9-55 cm, x;=0-25 mm, 1 =68 mm, ze=
0-50 mm and y2=49-8 mm. The axial divergence
profiles for the equatorial case (r=0) at various 2¢
are given in Fig.3 and for various r, 2¢=160° (20)
in Fig.4. Intensities calculated by the graphical
method described in the preceding paper for the same
experimental conditions are also given in Figs. 3 and 4.

2.2. Centroid displacement

Axial divergence displaces the centroid of the profile
by

SSS 2¢e(f, p, r)dp df dr
\(§ dpdr ar '

While equation (19) may be evaluated for any value
of r, only the simple case of »=0 will be considered
(corresponding to a detector whose ‘window’ dimen-
sions are small). The integration is then over the
region LM NQ (Fig. 2) and the limits are defined by
equations (11)-(13) and p=0. The integration is fur-
ther simplified if the f, p axes are rotated through
angles £, — & to f’, p’ where

(26) = (19)

tan {=my (20)
and
tan E=ms . (21)
Then
S\ [ cos{ —siné\/[f’
<p)_<—siné“ cos E> (ﬁ) =2
and
¢ a I’ ! ! ’
(§2etr o) S oy
26y = P . (23)
Ssa(f,'p)d df
o(fs p)
From equation (22),
M\ 1 fcos& siné\(f .
v) sl me) ) e
giving
af,p) 1
o) eos 48 (%)
The centroid displacement (r=0) is thus
2e(f’, p')dp'df’
<28>=SS e(f', p")dp'df 26)

SS dp'df’
where the limits of integration are
fL<f <fo lor =F' <f <F),
0<p <pplor 0<p <P).

Referred to axes (f’, p'), with »=0, equation (5) be-
comes
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2¢(f', p')=A(f")?+ Bf'p'+ C(p')? (27)
where {, £ are given by equations (20) and (21),
A=(1/82)[14 (14 u sec 2¢) sin 2{
+ p(p+2 sec 2¢)sin2 £)]
B=—(2/8?)[sin ({+&)+ (1 + u sec 2¢) cos (L — &) 28)
+ u{p+2 sec 2¢) sin £ cos &]
C=(1/8?)[1+ (14 usec 2¢) sin 2§
+ pu(u+2sec 2¢) cos2 £] .
From equation (26),
WP P
N+ mrp rowri 4
(2¢) = 0 YT ,
S S dpldfl
—Pr’'Jo
or
2ey=3[AF')2+C(P')]. (29)
F' is given by the transform of equation (13),
—sin {F' = —mg cos CF' +c2
or
F'=c.zl/(1+mf)/(m.2—m1) s (30)

and P’ is given by the transform of equation (12),

cos EP' =m; sin &+¢1
or

P’ =c,)/(1+m3)[(my—my) . (31)

Substituting for F’, P’ in equation (29),
1
2%y =
2e) 6S2(ma —my )2
X [e3{[(1 +m1)®+ pami] cot 2¢+2uma(1 +my) cosec 2¢}
+{[(1 +my)? + uym3] cot 2¢ + 2 ume(1 +mz) cosec2¢}],

(32)
or
(2e) = B(q1—qo) (03Qu + 1 Qs2) (33)
where
2;
2a;=slit height/focus-to-slit distance <= S—x§> ,
— Y
¢: =specimen-to-slit distance/slit-to-focus
distance <= S—g%/;) (34)
and

Qu=[1—gi(u—1)[1-g(pu—1)] cot 2¢
+ulg:(1+g5)+gs(1+¢:)] cot @ .

For the particular case of the modified Philips 5-76 cm
camera referred to in § 2.1, the centroid displacement
is

{2&)=0-925 cot 2¢+ 1726 cot ¢

°(26)x 10 . (35)
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2.3. Variance

The variance, or mean-square broadening, of the
profile is

W=((2e)%)—(2e)°, (36)

where (2¢)? is obtained from equation (33) and
F' P
U\ e o ar

F P
(oo
_F

0

((2e)%) =

F' WP
g S [A(f")2+Bf'p'+C(p')2) dp’ df’
J—F" Jo )

(" {aar

_F
=1ANF') 4+ §2AC + B2)(F)2(P' )2+ 3C2(P')* .
(37)
The variance then reduces to
1 , ; ; 5
W =2(—_? {foxa@h + $aiod(Qn@e+2Q%) +11(‘)0‘%Q§2}
noe —{2e)%. (38)

For the modified Philips 5-76 cm camera the variance
is

W =0-995 cot? 2¢ +2-608 cot 2¢ cot ¢+ 7-733 cot2ep
[°(20)]2 x 108 . (39)

3. Conclusions

The intensity profiles arising from axial divergence
have been derived analytically, using a method based
on Eastabrook’s approximation of neglecting the sec-
ond and higher orders of 2¢, the difference in angle
between an element of the diffracted beam and the
equivalent beam diffracted according to the Bragg
equation. (It should be noted that 2¢ is added to the
measured angle 2¢ to obtain the Bragg angle.) A
general expression for the line profile would be un-
wieldy, but for a camera of known geometry, the pro-
cedure for obtaining it is quite straightforward. The
profiles at various angles have been computed for a
modified Philips 5:76 cm camera (Beu, Musil & Scott
1962).

In Fig. 3, the intensity variation along the equato-
rial line of the film cylinder (r=0) is given correspond-
ing to that received by a detector whose ‘window’
dimensions are small. In all cases there is an infinity
at 2e=0 and, except at one particular angle (deter-
mined by the collimator geometry), the profiles are
asymmetric. In Fig. 4, off-axis profiles are illustrated
for 2¢pp=160 °(20). As |r| departs from zero, the infinity
at 2¢=0 persists until |r| attains a particular value
[7|1im, and for further increases in |r|, the maximum
intensity falls off rapidly. [|r|iim is the value of r for
which the 2¢=0 contours just touch a boundary of
the (f, p) plane.]

ACCURATE LATTICE PARAMETERS BY FILM POWDER METHODS. IV

If the above profiles are compared with those cal-
culated for the same camera by the graphical method
of Beu, Landstrom, Whitney & Pike (1964), it will be
seen that there is negligible discrepancy between the
results of the two methods except at low and very
high angles. Though the differences are unlikely to be
significant in practice, the graphical procedure should
give a better approximation to the exact intensity in
these regions. At intermediate angles, the use of an
analytical method obviates the difficulties arising from
the infinity at 2¢=0.

The expressions for the centroid displacement and
mean-square broadening (the variance) are quite gen-
eral and again give a sufficiently good approximation
in practice except at low or very high angles. The
centroid displacement, given by equation (33), is zero
at the angle for which the line profile is symmetrical,
positive for lower angles and negative at higher
angles. The variance, given by equation (38), passes
through a minimum at the same angle. For the above
camera, the shift in centroid, from equation (35), is
given in Fig. 5, and the variance, from equation 39, is
given in Fig. 6, for various 2¢. The centroid displace-
ment is —0-025° at 10° (20), falling to zero at about
130° (20) and is +0-005° at 170° (268). The correspond-
ing root-mean-square breadths at these angles are,
respectively, 0-030°, a minimum of about 0-002° and
0-006°. Thus the centroid displacement and breadth
due to axial divergence for this particular camera
geometry are comparatively small, except at low or

150°
3o° 600 90 120° 180°
-5 2 °(26)

Fig. 5. Centroid displacement for & modified Philips 5:76 cm
powder camera (r=0).

-

00

50|

W [°(26)/2x106

0 30° 60° 900 1200 150" 180°
2 *(20)

Fig. 6. Mean-square-broadening (variance) for a modified
Philips 5:76 cm powder camera (r=0).
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very high angles, and only become significant if the
film is photometered to this order of accuracy. These
quantities may be compared with the centroid dis-
placement and variance which have been determined
previously (Pike, 1957, 1959; Langford, 1962) for a
diffractometer with various collimator geometries.

Unlike most geometrical effects, the error arising
from axial divergence does not extrapolate to zero
at 26=180°. In the accurate determination of lattice
parameters, therefore, it is necessary to evaluate the
contribution to each diffraction maximum. If the cen-
troid and variance are used as measures of position
and breadth, the axial-divergence error is directly
additive to errors from other aberrations (Pike,1957;
Parish & Wilson, 1959).

Acta Cryst. (1964). 17, 651
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We are indebted to Prof. A.J. C. Wilson for his
interest in the paper and for valuable advice and
criticism.
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Neutron Diffraction Investigation of U,0,*

By B. O. LoopsTrRA
Reactor Centrum Nederland, Petten(NH), The Netherlands

(Recetved 24 June 1963)

A polycrystalline sample of orthorhombic U;O4 has been investigated by neutron diffraction in
order to resolve discrepancies between previous single-crystal X-ray and powder neutron investiga-
tions. The space group is Amm2 (C};). The uranium atoms are surrounded by six oxygen atoms in
close contact at distances between 2-07 and 2-23 A, with a seventh oxygen atom at 2-44 A for the

U(1) atom and at 2-71 A for the U(2) atom.

Introduction

The structure of the orthorhombic form of UszOs,
first proposed by Zachariasen (1945), has been rede-
termined independently by an X-ray investigation on
single crystals (Chodura & Maly, 1958) and by a
neutron-diffraction investigation on powdered mate-
rial (Andresen, 1958). The results from the two
methods differ in many details, although the overall
features are quite similar (Fig.2). Because the in-
vestigation of Andresen made use of a neutron dia-
gram with a rather poor resolution, it seemed worth
while to repeat it, using an improved resolution, in
order to get a set of experimental data more sensitive
to the details of the structure.

Experimental

A high purity sample of UzOs powder was mounted
on the powder diffractometer at the Petten HFR. The

* Work sponsored jointly by Reactor Centrum Nederland,
the Netherlands and Institutt for Atomenergi, Norway.

+ Actually there is one weak intensity at 25-3° 20 that
cannot be indexed on the present cell. Nor, however, does it
fit with an @ axis of double length. It has been neglected.

sample was contained in a cylindrical aluminum
sample holder of 0-05 mm wall thickness and 24 mm
diameter. Monochromatic radiation with a wavelength
of 1092 A was obtained from a copper (200) plane.
Soller slits of 10" angular divergence were mounted in
front of the BF; detector and between the reactor and
the monochromator. The experimental data of Table 1
were obtained in about one week with the reactor
operating at 20 MW. The intensities were brought to
an absolute scale by scaling from a nickel powder
diagram, obtained under identical conditions. The
diagram is reproduced in Fig. 1.

Results and discussion

From an X-ray diagram the unit-cell dimensions of
the sample were found to be a=4-143,56=11-96¢ and
¢=6-71; A. The axes have been chosen in accordance
with the usual designation of the space group, derived
below. To avoid confusion, all space groups mentioned
have been referred to these axes.

The unit cell is in acecordance with Andresen’s data,
whereas Chodura & Maly report an a axis of double
length derived from weak layer lines on rotation



